Pain Management

Anesthesia
Aseptic surgery
Analgesia
Euthanasia
What is Pain?

Normal Behavior Pain Analgesics Altered Behavior
Do Animals Feel Pain?

• Behavioral responses to stimuli
 – Prey species
 – Photoperiod

• Behavioral response to analgesics

• Nociceptive receptors
Definitions

• **Anesthesia:** loss of sensation induced by drug administration.
• **Analgesia:** loss of sensibility to pain.
• **Tranquilizer:** Chemical causing indifference to pain or sensory input.
• **Sedative:** Chemical that calms and promotes sleep.
• **Paralytic (Neuromuscular blocking agent):** chemical that prevents motor function, but not sensory input.
• **Euthanasia:** quiet, painless termination of life.
Health Research Extension Act

- Avoid or minimize discomfort, pain, or distress.
- Appropriate pain management required.
- Sacrifice when pain cannot be alleviated.
 - IACUC Humane Endpoints
 - http://safetyservices.ucdavis.edu/ps/a/IACUC/po/humaneEndpoints
- Vet care is required.
- AVMA Panel on Euthanasia.
- Institutional Animal Care and Use Committee (IACUC)
Controlled Substances

• Legal Classification by the Federal Comprehensive Drug Abuse and Control Act:
 – Schedule I drugs: high potential for abuse, no acceptable use.
 – Schedule II drugs: High potential for abuse, acceptable medical use.
 – Schedule III, IV, and V: progressively less addictive with lower potentials for abuse.
Controlled Substances

• Requirements for use
 – License needed to obtain these drugs
 – Detailed records on
 • Amount received
 • Amount and purpose for use
 • Amount on hand
 – Storage with limited access
 – Subject to unannounced inspections.
Classes of Anesthetics

• Injectables
 – Needles
 – Syringes
 – Sharps container

• Inhalants
 – O₂ source
 – Pressure reduction valve
 – Flow meter
 – Precision vaporizer
 – Non-rebreathing delivery
 – Scavenger

<table>
<thead>
<tr>
<th>Surgeon Prep</th>
<th>Instrument Prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Prep</td>
<td>Recovery</td>
</tr>
<tr>
<td></td>
<td>Surgical Arena</td>
</tr>
</tbody>
</table>
Classes of Anesthetics

- **Injectables**
 - Peaks and valleys

- **Inhalants**
 - Steady levels

Injectable

Inhalant

Surgical plane
Classes of Anesthetics

• Injectables
 – Bolus delivery results in peaks and valleys
 – Elimination/Recovery
 • Slow—via circulatory/urinary system
 • 100% metabolized by liver and kidney
 • Possible tissue damage
 – Overdose Tx
 • Antagonistic drugs
 – Rodents—any procedure
 – Rabbits—used for minor procedures or as a premedication for inhalant induction

• Inhalant
 – Continuous delivery results in steady plane of anesthesia.
 – Recovery
 • Fast—via lungs
 • Little or no metabolism
 – Overdose Tx
 • Increase O₂
 – Rodents—induction chamber followed by masking
 – Rabbit surgery generally requires intubation.
Balanced Anesthesia

• Combining drugs causes dose dependent side-effects to decrease.

• Sedatives: Used to calm an animal
 – May be given prior to or with anesthetic
 – Facilitates handling if give prior
 – Lower the dosages of anesthetics required
 – Acepromazine and xylazine

• Muscle relaxants:
 – Muscle tension increases pain and trauma
 – Added to anesthetics that are not good muscle relaxants
 – Xylazine
Injectables

• Ketamine
 – Dissociative Anesthetic
 – Little medullary affect
 • Respiratory
 • Cardiovascular
 – Poor muscle relaxant
 • Mix with xylazine

• Pentobarbital
 – CNS depressant
 • Respiratory depressant
 – Good muscle relaxation
 – Random movement and vocalization common
 – Narrow margin of safety in rodents
Inhalants

- **Isoflurane**
 - Requires a precision vaporizer
 - Rapid induction & recovery (~2 minutes)
 - Rodents are induced in chambers and then masked
 - Rabbits are given an injectable and then intubated
 - Low cardiovascular & respiratory depression
 - 0.17% metabolized
 - Safe for patients and operators
Dosage vs Response

- **ADME:**
 - Absorption
 - Distribution
 - Metabolism
 - Excretion

- Dosages are based on ideal scenarios. Any disruption in these 4 steps change the response.

- Rodents are unpredictable in their response to anesthesia
Individual Response

• Small size:
 – Drugs often must be diluted
 – IV is often difficult to access; more alternate routes used

• High metabolism rate and oxygen consumption:
 – Require larger relative dosages
 – Clearance rate is faster
 – Decreased tolerance for respiratory depression

• Age
 – Young animals have a faster metabolism but underdeveloped organs
 – Old animals may have failing organs
Individual Responses

• Receptor physiology
 – Number of receptors
 – Speed of breakdown

• Health/research manipulations
 – Hydration level
 – Changes to clearance organs

• Genetics
 – Breeds/stocks/strains/lines do not all respond alike
 – Transgenic and mutations don’t act like background lines

• Environmental Conditions
 – Microsomal liver enzymes effect catabolism speed
Choosing the anesthesia regime

- Look at length of procedure and depth required.
 - Light sedation: Acepromazine alone
 - Clinical techniques that don’t require anesthesia
 - Light anesthesia: Ketamine/Xylazine/Acepromazine
 - Clinical techniques that do require anesthesia
 - Vasodilatation advantageous for blood collection
 - Deep anesthesia: Ketamine/Xylazine
 - Surgical procedures
 - Vasodilatation contraindicated.
Drug Formulary

• Drug Formulary: A document that gives a range of dosages by species
 – Expressed in mg/kg (units to use in the protocol)

Anesthetic Formulary for Rats

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Route</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>25 - 40 mg/kg</td>
<td>IM</td>
<td>Light sedation</td>
</tr>
<tr>
<td></td>
<td>100 mg/kg</td>
<td>IM</td>
<td>Immobilization</td>
</tr>
<tr>
<td></td>
<td>50 - 100 mg/kg</td>
<td>SC, IP</td>
<td></td>
</tr>
<tr>
<td>Ketamine/Acepromazine</td>
<td>75/2.5 mg/kg</td>
<td>IM</td>
<td></td>
</tr>
<tr>
<td>Ketamine/Xylazine</td>
<td>75-95/5 mg/kg</td>
<td>IM, IP</td>
<td>Deep anesthesia</td>
</tr>
<tr>
<td></td>
<td>50/5 mg/kg</td>
<td>SC, IP</td>
<td>Light anesthesia</td>
</tr>
</tbody>
</table>
Drug Concentration

• Concentration: Found on the bottle of the drug
 – Expressed in mg/ml
 – Example: Ketamine 100 mg/kg
 – This can vary; always check.
Calculate Delivery Dose

- Ketamine
 - Formulary dose
 - 50 mg/kg bwt
 - Concentration (invert)
 - 100 mg/ml
 - Calculate delivery dose

\[
\frac{50 \text{ mg}}{1 \text{ kg}} \times \frac{1 \text{ ml}}{100 \text{ mg}} = 0.5 \text{ ml/kg}
\]
Calculating Your Delivery Volume

- Weight the rat and convert to kilograms
 - Kg = g bwt/1000
- Ketamine dose for a 300 g rat
 - 0.5 ml/kg x __________ kg = __________ ml
• Delivery dose calculations
 – Ketamine (100 mg/ml): Anesthetic
 • 50 mg/kg x 1 ml/100 mg = 0.5 ml/kg

 – Xylazine (20 mg/ml): Sedative, analgesic, muscle relaxant
 • 5 mg/kg x 1 ml/20 mg = 0.25 ml/kg

 – Acepromazine (10 mg/ml): Sedative, vasodilator
 • 0.5 mg/kg x 1 ml/10 mg = 0.05 ml/kg
Anesthesia for Clinical Techniques

• Delivery volume calculations--Why we dilute
• Example: 300 g rat

– Ketamine (100 mg/ml): Anesthetic
 • 0.5 ml/kg x 0.3 kg rat = 0.15 ml

– Xylazine (20 mg/ml): Sedative, analgesic, muscle relaxant
 • 0.25 ml/kg x 0.3 kg rat = 0.075 ml

– Acepromazine (10 mg/ml): Sedative, vasodilator
 • 0.05 ml/kg x 0.3 kg rat = 0.015 ml
Cocktails

- Combine drugs used for balanced anesthesia into a single vial with, or without dilution, for ease of delivery.
- You will use 2 cocktails in the lab, both with a delivery dose of 1 ml/kg. This is the cocktail for the clinical techniques lab:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Delivery Dose</th>
<th>Delivery dose for a 1 kg rat</th>
<th>Volume for a 1 ml cocktail</th>
<th>Volume for a 10 ml cocktail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>0.5 ml/kg</td>
<td>0.5 ml</td>
<td>0.50 ml</td>
<td>5.0 ml</td>
</tr>
<tr>
<td>Xylazine (20 mg/kg)</td>
<td>0.25 ml/kg</td>
<td>0.25 ml</td>
<td>0.25 ml</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Acepromazine</td>
<td>0.05 ml/kg</td>
<td>0.05 ml</td>
<td>0.05 ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td>0.20 ml</td>
<td>2.0 ml</td>
</tr>
</tbody>
</table>
Surgical Cocktail

• For the surgical cocktail
 – Dosages are higher; as is xylazine concentration
 • Ket: 90 mg/kg x 1 ml/100 mg = 0.9 ml/kg
 • Xyl: 9 mg/kg x 1 ml/100 mg = 0.09 ml/kg
 – Water isn’t needed because the ratio is 1:9 and higher dosages negate the need for further dilution

<table>
<thead>
<tr>
<th>Drug</th>
<th>Delivery Dose</th>
<th>Delivery dose for a 1 kg rat</th>
<th>Volume for 1 ml cocktail</th>
<th>Volume for a 10 ml cocktail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamine</td>
<td>0.9 ml/kg</td>
<td>0.9 ml</td>
<td>0.9 ml</td>
<td>9.0 ml</td>
</tr>
<tr>
<td>Xylazine</td>
<td>0.09 ml/kg</td>
<td>0.09 ml</td>
<td>0.1 ml</td>
<td>1.0 ml</td>
</tr>
<tr>
<td>(100 mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Anesthesia

• To re-dose your animal
 – Use ketamine only unless otherwise directed
 – Use 1/3 to ½ of the original dose of ketamine
 – Clinical techniques
 • 50 mg/kg x 1kg/100 ml = 0.5 ml/kg
 – Mild toe pinch: 1/3 x 0.5 ml/kg = 0.15 ml/kg
 – Very responsive: ½ x 0.5 ml/kg = 0.25 ml/kg
 – Anesthesia
 • 90 mg/kg x 1kg/100 ml = 0.9 ml/kg
 – Mild toe pinch: 1/3 x 0.9 ml/kg = 0.3 ml/kg
 – Very responsive: ½ x 0.9 ml/kg = 0.45-0.5 ml/kg
Pre-operative Care

• Fasting:
 – Limiting ridge between esophagus and stomach prevents regurgitation (except GP).
 – High metabolism rate can make fasting risky.
• Rabbit and guinea pig: usually fasted 3 to 6 hours—large cecum can affect bwt.
• Small rodents: not necessary to fast
Peri-operative Maintenance

• Side effects of large surface to mass ratio
 – Dehydration
 • SQ fluids
 • Eye lube
 – Hypothermia
 • Circulating water mat
 • Gel microwavable mat
Evaluation of Anesthetic Level

• Response to stimulation
 – Pedal withdrawal/toe pinch
 – Pinna (for rabbits)
 – Eye blink
 – Purposeful movement or vocalizations

• Muscle tone (jaw tone)

• Color of mucus membranes and eyes

• Breathing patterns
Anesthetic Monitoring

- For non-rodent mammals, measurements are usually recorded.
 - Heart rate
 - Respiratory rate
 - Temperature
 - Possibly blood pressure and circulating oxygen levels
Surgical Categories

- **Major**: Exposing a major body cavity or causing substantial trauma
- **Minor**: Not exposing a major body cavity nor causing substantial trauma
- **Survival**: Patient is expected to wake from anesthesia
- **Terminal**: Patient is humanely euthanized prior to recovery from anesthesia
• Health Research Extension Act requires asepsis for surgery on all vertebrate species.

• Goal of asepsis—to reduce the normal bacterial burden
 – Bacteria entering wound < 10^5 bacteria/g of tissue or ml of body fluid.

• Link to the campus policy on Survival Surgery Guidelines on Rodents
Operating Area

• Non-rodent mammals require a surgical suite with 2 to 5 rooms
 – Animal prep
 – Human prep
 – Instrument prep
 – Surgery room
 – Recovery room

• Rodents can be done in 1 room
 – Away from human traffic and free of clutter
 – Clean and disinfect surfaces and equipment
 – Separate space within the room for 3 areas: prep, surgery, and recovery.
Instruments

- Clean off tissue, blood, and other proteins.
- Wrap in toweling or commercial packaging
- Sterilize
 - Autoclave
 - Dry heat oven
 - Irradiation
 - Ethylene oxide
 - Chemical bath
- Label and date—shelf life ~8-10 weeks
Instrument Use

• For rodents, instruments may be used for multiple surgeries on the same day if the following guidelines are followed
 – Use instruments for no more than 6 major surgical procedures before cleaning and autoclaving
 – Have a minimum of 2 surgical packs
 – Clean instruments of blood and tissue and sterilize in a glass bead sterilizer between surgeries.
Remove hair

• Prevent contamination by clipping hair away from operating area.
• Use electric clippers, razor, or depilatory
• Clip area larger than fenestration (~1 cm to either side of incision in rat).
• Fur should not show through fenestration, but excess hair removal can cause lost body heat.
• Use a dry gauze or small vacuum to remove loose hair.
Clean site

- Surgical **scrub**—detergent and disinfectant combined.
 - Betadine Scrub (povidone iodine)
 - Nolvasan Scrub (chlorhexidine)
- Scrub pattern must be from center to periphery
- **Rinse** with sterile water, saline, or 70% ethyl alcohol
- Repeat Scrub-Rinse cycle 3 times
- Apply compatible disinfectant without detergent
 - Betadine Solution
 - Nolvasan Solution
Surgeon

- Clean cap and mask
- Put on clean lab coat or sterile gown
- Wash hands and arms with antibacterial soap and scrub brush
- Dry hands and arms on a clean or sterile towel
- Put on sterile gloves
 - For multiple surgeries, only gloves need to be changed between animals.
Sterile Field

• The sterile field is the area above and below the animal and the front of the surgeon.
• Table is disinfected and draped with sterile cloth.
• Drape animal with sterile cloth or adhesive drape leaving only the head and incision site exposed.
 – Fenestration: hole in drape exposing incision. Prevents instruments or viscera from becoming contaminated.
Maintaining the Sterile Field

• Keep on sterile field
 – Instruments and equipment
 – Suture material
 – Gloved hands

• Keep off sterile field
 – Bottles of disinfectant or anesthesia
 – Syringe or suture packaging
 – Animal until scrubbed and prepped
Surgical Records

- Surgical records must include:
 - Weight of animal
 - Anesthesia dose (mg/kg), route, and time delivered
 - Procedure times: start and finish
 - Observations every 15 minutes during anesthetic recovery
 - Analgesics given
 - Daily (minimum) monitoring until sutures/wound clips are removed.

<table>
<thead>
<tr>
<th>Investigator</th>
<th>UC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol #</td>
<td>Campus Veterinary Services</td>
</tr>
<tr>
<td>Animal #</td>
<td>Anesthesia:</td>
</tr>
<tr>
<td>Species</td>
<td>Pre-anesthetic Drugs:</td>
</tr>
<tr>
<td>Sex, Age</td>
<td>ANESTHETIC INDUCTION AND MAINTAINANCE:</td>
</tr>
<tr>
<td>Weight</td>
<td>Post-Anesthetic Recovery:</td>
</tr>
<tr>
<td>Housing Site</td>
<td></td>
</tr>
</tbody>
</table>

Anesthesia Record

- Drug | Date | Route |

Post-Anesthetic Recovery

- Drug | Time | Route |

Post-Operative Anesthesia

- Drug | Time | Route |

Animal Identification

- Drug | Time | Route |
Post-Operative Recovery

• Post-Anesthesia
 – Maintain body temperature: Offer temperature gradient
 – Bedding: Towel, carpet, etc.
 – Additional hydration can speed recovery
 – Observation: monitor and record every 15 minutes until animals are sternal and clearly awake

• Post-operative (days following surgery)
 – Daily (minimum) checks: Animals must be observed daily for signs of pain or surgical complications.
 – Analgesia administered as specified in protocol
 – Wound clips or sutures removed at 7 to 10 days.
Recognition of Chronic Pain

- Food and water intake
- Weight loss of 10%
- Loss of body conformation
- Activity
- Posture or gait
- Temperament
- Vocalizations
- Localized appearance
- General appearance
Weight vs. Body Condition Scoring

~10% loss of bwt: Treat

~20% loss of bwt: Euthanize

BC 1
Mouse is emaciated.
- Skeletal structure extremely prominent; little or no flesh cover.
- Vertebrae distinctly segmented.

BC 2
Mouse is underconditioned.
- Segmentation of vertebral column evident.
- Dorsal pelvic bones are readily palpable.

BC 3
Mouse is well-conditioned.
- Vertebrae and dorsal pelvis not prominent; palpable with slight pressure.

BC 4
Mouse is overconditioned.
- Spine is a continuous column.
- Vertebrae palpable only with firm pressure.

BC 5
Mouse is obese.
- Mouse is smooth and bulky.
- Bone structure disappears under flesh and subcutaneous fat.

A “+” or a “-” can be added to the body condition score if additional increments are necessary (i.e., ...2+, 2, 2-...)
Analgesic Frequency

- More effective when given before the onset of pain
- Mild pain (minor surgery): 12 to 24 hours. 1 dose is often sufficient with mice.
- Severe Pain (major surgery): 24 to 48 hours
- Intense pain (orthopedic surgery): 3 to 4 days
Morphine (Opioid)

- Most powerful and effective
- Controlled substances (Schedule II)
- Relatively short lasting—need frequent redosing (every 2-4 hours)
- Cause sedation and depresses respiration and gastric motility
- Route: Injection
Buprenorphine (Opioid)

• Not as powerful as morphine
• Also controlled but Schedule V
• Longer lasting—as much as 8 – 12 hours
• Little risk of respiratory or gastric depression
• Route: Injectable (SC), oral (gelatin)
NSAIDS

- NSAIDS (Non-steroidal anti-inflammatory):
 - Mild to moderate relief
 - Not controlled
 - Most are short acting -- ~4 hours
 - Oral route acceptable, but can produce gastric upset
 - Carprofen (Rimadyl): Injectable, long lasting (8-12 hours), fewer gastric side effects
Other Methods of Pain Management

- Immobilization or padding affected area
- Careful tissue handling & wound closure
- Providing easy access to food and water
- Soft bedding/hiding places
- Temporary isolation from cage mates
Euthanasia

- Method must be approved by AVMA (American Veterinary Medical Association)
- Loss of consciousness with little or no pain, distress, or anxiety.
- Assurance of death on an individual basis
 - Physical exam
 - Secondary method
- Other considerations
 - Personnel: skill and acceptance
 - Animal: Age, number, temperament
 - Potential effects: experimental, environmental
Injectable Euthanasia

- **Injectables**
 - Preferred method for rabbits. Can be used with rodents
 - Anesthetic overdose or euthanasia solution
 - Requires no special equipment but does require individual restraint
 - IV: Rapid but difficult
 - IC: Requires prior anesthesia
 - IP: Acceptable in small animals and with non-irritating chemicals
 - IM and SQ are too slow
Inhalant Euthanasia

• CO₂ is most common for rodents
 – Advantages
 • Rapid analgesic effects
 • Minimal handling and restraint
 • Safe for personnel
 • No chemical residue
 – Disadvantages
 • Potential to cause distress
 – Carbonic acid formation
 – Feeling of breathlessness
 – Fear response
 • Neonates resist hypoxia and larger animals take too long
 – Method
 • Fill rate of 10 – 30 liters per minute will take longer
 but will produce loss of consciousness before the onset of pain.
Inhalant Euthanasia

- Anesthetic overdose (Isoflurane is most common)
 - Minimal handling and restraint
 - Long exposure times are required to assure death
 - Rabbits breath-hold with isoflurane and need to be premedicated
Physical Methods

• Hypothermia (no contact with frozen surfaces)
 – Altricial neonatal rodents (≤5 days)

• Decapitation
 – Rodents and small rabbits w/anesthesia
 – Altricial rodents 5 to 14 days old

• Cervical dislocation: w/anesthesia
 – Mice and rats <200 g
 – Rabbits <1 kg.
Protocol Requirement

• All protocols must list an appropriate form of euthanasia.